Performance Metrics and Design Parameters for a Free-space Communication Link Based on Multiplexing of Multiple Orbital-Angular-Momentum Beams
نویسندگان
چکیده
We study the design parameters for an orbital angular momentum (OAM) multiplexed free-space data link. Power loss, channel crosstalk and power penalty of the link are analyzed in the case of misalignment between the transmitter and receiver (lateral displacement, receiver angular error, or transmitter pointing error). The relationship among the system power loss and link distance, transmitted beam size and receiver aperture size are discussed based on the beam divergence due to free space propagation. We also describe the trade-offs for different receiver aperture sizes and mode spacing of the transmitted OAM beams under given lateral displacements or receiver angular errors. Through simulations and some experiments, we show that (1) a system with a larger transmitted beam size and a larger receiver aperture is more tolerant to the lateral displacement but less tolerant to the receiver angular error; (2) a system with a larger mode spacing, which uses larger OAM charges, suffers more system power loss but less channel crosstalk; thus, a system with a small mode spacing shows lower system power penalty when system power loss dominates (e.g., small lateral displacement or receiver angular error) while that with a larger mode spacing shows lower power penalty when channel crosstalk dominates (e.g., larger lateral displacement or receiver angular error); (3) the effects of lateral displacement and receiver angular error are not necessarily independent; as an example of them combined, the effects of the transmitter pointing error on the system are also investigated. Keywords—Free-space communications, orbital angular momentum, lateral displacement, receiver angular error, transmitter pointing error, crosstalk, power penalty
منابع مشابه
High-capacity millimetre-wave communications with orbital angular momentum multiplexing
One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front 'twisting' indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase...
متن کاملRecent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication...
متن کاملMode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase...
متن کامل100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength.
We investigate the orthogonality of orbital angular momentum (OAM) with other multiplexing domains and present a free-space data link that uniquely combines OAM-, polarization-, and wavelength-division multiplexing. Specifically, we demonstrate the multiplexing/demultiplexing of 1008 data channels carried on 12 OAM beams, 2 polarizations, and 42 wavelengths. Each channel is encoded with 100 Gbi...
متن کاملMultipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing
Electromagnetic waves carrying orbital angular momentum (OAM) have been used for mode division multiplexing in free-space communication systems to increase both the capacity and the spectral efficiency. In the case of conventional wireless communication links using non-OAM beams, multipath effects caused by beam spreading and reflection from the surrounding objects affect the system performance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1408.6744 شماره
صفحات -
تاریخ انتشار 2014